The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae.
نویسندگان
چکیده
The plasma-membrane of Saccharomyces cerevisiae contains high affinity permeases for Cu(I) and Fe(II). A low affinity Fe(II) permease has also been identified, designated Fet4p. A corresponding low affinity copper permease has not been characterized, although yeast cells that lack high affinity copper uptake do accumulate this metal ion. We demonstrate in the present study that Fet4p can function as a low affinity copper permease. Copper is a non-competitive inhibitor of (55)Fe uptake through Fet4p (K(i)=22 microM). Fet4p-dependent (67)Cu uptake was kinetically characterized, with K(m) and V(max) values of 35 microM and 8 pmol of copper/min per 10(6) cells respectively. A fet4-containing strain exhibited no saturable, low affinity copper uptake indicating that this uptake was attributable to Fet4p. Mutant forms of Fet4p that exhibited decreased efficiency in (55/59)Fe uptake were similarly compromised in (67)Cu uptake, indicating that similar amino acid residues in Fet4p contribute to both uptake processes. The copper taken into the cell by Fet4p was metabolized similarly to the copper taken into the cell by the high affinity permease, Ctr1p. This was shown by the Fet4p-dependence of copper activation of Fet3p, the copper oxidase that supports high affinity iron uptake in yeast. Also, copper-transported by Fet4p down-regulated the copper sensitive transcription factor, Mac1p. Whether supplied by Ctr1p or by Fet4p, an intracellular copper concentration of approx. 10 microM caused a 50% reduction in the transcriptional activity of Mac1p. The data suggest that the initial trafficking of newly arrived copper in the yeast cell is independent of the copper uptake pathway involved, and that this copper may be targeted first to a presumably small 'holding' pool prior to its partitioning within the cell.
منابع مشابه
High-affinity copper transport and Snq2 export permease of saccharomyces cerevisiae modulate cytotoxicity of PR-10 from Theobroma cacao.
A pathogenesis-related (PR) protein from Theobroma cacao (TcPR-10) was identified from a cacao-Moniliophthora perniciosa interaction cDNA library. Nucleotide and amino acid sequences showed homology with other PR-10 proteins having P loop motif and Betv1 domain. Recombinant TcPR-10 showed in vitro and in vivo ribonuclease activity, and antifungal activity against the basidiomycete cacao pathoge...
متن کاملAssembly, activation, and trafficking of the Fet3p.Ftr1p high affinity iron permease complex in Saccharomyces cerevisiae.
The high affinity iron uptake complex in the yeast plasma membrane (PM) consists of the ferroxidase, Fet3p, and the ferric iron permease, Ftr1p. We used a combination of yeast two-hybrid analysis, confocal fluorescence microscopy, and fluorescence resonance energy transfer (FRET) quantification to delineate the motifs in the two proteins required for assembly and maturation into an uptake-compe...
متن کاملFre1p Cu Reduction and Fet3p Cu Oxidation Modulate Copper Toxicity in Saccharomyces cerevisiae*
Fre1p is a metalloreductase in the yeast plasma membrane that is essential to uptake of environmental Cu and Fe . Fet3p is a multicopper oxidase in this membrane essential for high affinity iron uptake. In the uptake of Fe , Fre1p produces Fe that is a substrate for Fet3p; the Fe produced by Fet3p is a ligand for the iron permease, Ftr1p. Deletion of FET3 leads to iron deficiency; this deletion...
متن کاملExogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae
The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1, which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that hist...
متن کاملToxicity of copper, cobalt, and nickel salts is dependent on histidine metabolism in the yeast Saccharomyces cerevisiae.
The pH-dependent inhibition of 22 metal salts have been systematically investigated for the yeast Saccharomyces cerevisiae. We have established that the inhibition of growth by Cu, Co, or Ni salts is markedly enhanced by histidine auxotrophy and by increasing the pH of the medium. Each of the his1-his7 mutant strains were unable to grow in the presence of elevated levels of Cu, Co, or Ni at nea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 351 Pt 2 شماره
صفحات -
تاریخ انتشار 2000